Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Cardiovasc Med ; 10: 1146833, 2023.
Article in English | MEDLINE | ID: covidwho-2315499

ABSTRACT

The superfamily of serine protease inhibitors (SERPINs) are a class of inhibitors that utilise a dynamic conformational change to trap and inhibit their target enzymes. Their powerful nature lends itself well to regulation of complex physiological enzymatic cascades, such as the haemostatic, inflammatory and complement pathways. The SERPINs α2-antiplasmin, plasminogen-activator inhibitor-1, plasminogen-activator inhibitor-2, protease nexin-1, and C1-inhibitor play crucial inhibitory roles in regulation of the fibrinolytic system and inflammation. Elevated levels of these SERPINs are associated with increased risk of thrombotic complications, obesity, type 2 diabetes, and hypertension. Conversely, deficiencies of these SERPINs have been linked to hyperfibrinolysis with bleeding and angioedema. In recent years SERPINs have been implicated in the modulation of the immune response and various thromboinflammatory conditions, such as sepsis and COVID-19. Here, we highlight the current understanding of the physiological role of SERPINs in haemostasis and inflammatory disease progression, with emphasis on the fibrinolytic pathway, and how this becomes dysregulated during disease. Finally, we consider the role of these SERPINs as potential biomarkers of disease progression and therapeutic targets for thromboinflammatory diseases.

2.
Vaccines (Basel) ; 11(4)2023 Apr 16.
Article in English | MEDLINE | ID: covidwho-2301495

ABSTRACT

Angioedema due to C1 inhibitor deficiency (AE-C1-INH) is a rare disease characterized by recurrent and unpredictable attacks of angioedema. Multiple trigger factors, including trauma, emotional stress, infectious diseases, and drugs, could elicit angioedema attacks. The aim of this study was to collect data on the safety and tolerability of COVID-19 vaccines in a population of patients affected by AE-C1-INH. Adult patients with AE-C1-INH, followed by Reference Centers belonging to the Italian Network for Hereditary and Acquired Angioedema (ITACA), were enrolled in this study. Patients received nucleoside-modified mRNA vaccines and vaccines with adenovirus vectors. Data on acute attacks developed in the 72 h following COVID-19 vaccinations were collected. The frequency of attacks in the 6 months after the COVID-19 vaccination was compared with the rate of attacks registered in the 6 months before the first vaccination. Between December 2020 and June 2022, 208 patients (118 females) with AE-C1-INH received COVID-19 vaccines. A total of 529 doses of the COVID-19 vaccine were administered, and the majority of patients received mRNA vaccines. Forty-eight attacks of angioedema (9%) occurred within 72 h following COVID-19 vaccinations. About half of the attacks were abdominal. Attacks were successfully treated with on-demand therapy. No hospitalizations were registered. There was no increase in the monthly attack rate following the vaccination. The most common adverse reactions were pain at the site of injection and fever. Our results show that adult patients with angioedema due to C1 inhibitor deficiency can be safely vaccinated against SARS-CoV-2 in a controlled medical setting and should always have available on-demand therapies.

3.
Cell Biochem Funct ; 41(1): 112-127, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2157718

ABSTRACT

The expeditious transmission of the severe acute respiratory coronavirus 2 (SARS-CoV-2), a strain of COVID-19, crumbled the global economic strength and caused a veritable collapse in health infrastructure. The molecular modeling of the novel coronavirus research sounds promising and equips more evidence about the pragmatic therapeutic options. This article proposes a machine-learning framework for identifying potential COVID-19 transcriptomic signatures. The transcriptomics data contains immune-related genes collected from multiple tissues (blood, nasal, and buccal) with accession number: GSE183071. Extensive bioinformatics work was carried out to identify the potential candidate markers, including differential expression analysis, protein interactions, gene ontology, and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment studies. The overlapping investigation found SERPING1, the gene that encodes a glycosylated plasma protein C1-INH, in all three datasets. Furthermore, the immuno-informatics study was conducted on the C1-INH protein. 5DU3, the protein identifier of C1-INH, was fetched to identify the antigenicity, major histocompatibility (MHC) Class I and II binding epitopes, allergenicity, toxicity, and immunogenicity. The screening of peptides satisfying the vaccine-design criteria based on the metrics mentioned above is performed. The drug-gene interaction study reported that Rhucin is strongly associated with SERPING1. HSIC-Lasso (Hilbert-Schmidt independence criterion-least absolute shrinkage and selection operator), a model-free biomarker selection technique, was employed to identify the genes having a nonlinear relationship with the target class. The gene subset is trained with supervised machine learning models by a leave-one-out cross-validation method. Explainable artificial intelligence techniques perform the model interpretation analysis.


Subject(s)
Artificial Intelligence , COVID-19 Drug Treatment , COVID-19 , Complement C1 Inhibitor Protein , SARS-CoV-2 , Humans , Complement C1 Inhibitor Protein/genetics , Computational Biology , COVID-19/genetics , COVID-19/immunology , SARS-CoV-2/drug effects , Gene Expression Profiling , Machine Learning , Immunity/genetics , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology
4.
Mol Immunol ; 150: 99-113, 2022 10.
Article in English | MEDLINE | ID: covidwho-1996438

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is associated with a clinical spectrum ranging from asymptomatic carriers to critically ill patients with complications including thromboembolic events, myocardial injury, multisystemic inflammatory syndromes and death. Since the beginning of the pandemic several therapeutic options emerged, with a multitude of randomized trials, changing the medical landscape of COVID-19. The effect of various monoclonal antibodies, antiviral, anti-inflammatory and anticoagulation drugs have been studied, and to some extent, implemented into clinical practice. In addition, a multitude of trials improved the understanding of the disease and emerging evidence points towards a significant role of the complement system, kallikrein-kinin, and contact activation system as drivers of disease in severe COVID-19. Despite their involvement in COVID-19, treatments targeting these plasmatic cascades have neither been systematically studied nor introduced into clinical practice, and randomized studies with regards to these treatments are scarce. Given the multiple-action, multiple-target nature of C1 inhibitor (C1-INH), the natural inhibitor of these cascades, this drug may be an interesting candidate to prevent disease progression and combat thromboinflammation in COVID-19. This narrative review will discuss the current evidence with regards to the involvement of these plasmatic cascades as well as endothelial cells in COVID-19. Furthermore, we summarize the evidence of C1-INH in COVID-19 and potential benefits and pitfalls of C1-INH treatment in COVID-19.


Subject(s)
COVID-19 Drug Treatment , Thrombosis , Antibodies, Monoclonal , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , Complement C1 Inhibitor Protein/therapeutic use , Disease Progression , Endothelial Cells , Humans , Inflammation/drug therapy , Kallikreins , Kinins , SARS-CoV-2 , Thromboinflammation , Thrombosis/drug therapy
5.
Curr Med Chem ; 29(3): 467-488, 2022.
Article in English | MEDLINE | ID: covidwho-1344212

ABSTRACT

Human C1-Inhibitor (C1INH), also known as C1-esterase inhibitor, is an important multifunctional plasma glycoprotein that is uniquely involved in a regulatory network of complement, contact, coagulation, and fibrinolytic systems. C1INH belongs to a superfamily of serine proteinase inhibitors (serpins) and exhibits its inhibitory activities towards several target proteases of plasmatic cascades, operating as a major antiinflammatory protein in the circulation. In addition to its inhibitory activities, C1INH is also involved in non-inhibitory interactions with some endogenous proteins, polyanions, cells and infectious agents. While C1INH is essential for multiple physiological processes, it is better known for its deficiency with regards to Hereditary Angioedema (HAE), a rare autosomal dominant disease clinically manifested by recurrent acute attacks of increased vascular permeability and edema. Since the link was first established between functional C1INH deficiency in plasma and HAE in the 1960s, tremendous progress has been made in the biochemical characterization of C1INH and its therapeutic development for replacement therapies in patients with C1INH-dependent HAE. Various C1INH biological activities, recent advances in the HAE-targeted therapies, and availability of C1INH commercial products have prompted intensive investigation of the C1INH potential for the treatment of clinical conditions other than HAE. This article provides an updated overview of the structural and biological activities of C1INH, its role in HAE pathogenesis, and recent advances in the research and therapeutic development of C1INH; it also considers some trends for using C1INH therapeutic preparations for applications other than angioedema, from sepsis and endotoxin shock to severe thrombotic complications in COVID-19 patients.


Subject(s)
Angioedemas, Hereditary , Complement C1 Inhibitor Protein , Angioedemas, Hereditary/drug therapy , COVID-19 , Humans
6.
World Allergy Organ J ; 13(9): 100454, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-704026

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has spread rapidly worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, enters host cells via angiotensin-converting enzyme 2 (ACE2) and depletes ACE2, which is necessary for bradykinin metabolism. The depletion of ACE2 results in the accumulation of des-Arg (9)-bradykinin and possible bradykinin, both of which bind to bradykinin receptors and induce vasodilation, lung injury, and inflammation. It is well known that an overactivated contact system and excessive production of bradykinin comprise the key mechanisms that drive the pathogenesis of hereditary angioedema (HAE). It is reasonable to speculate that COVID-19 may increase disease activity in patients with HAE and vice versa. In this review, we explore the potential interactions between COVID-19 and HAE in terms of the contact system, the complement system, cytokine release, increased T helper 17 cells, and hematologic abnormalities. We conclude with the hypothesis that comorbidity with HAE might favor COVID-19 progression and may worsen its outcomes, while COVID-19 might in turn aggravate pre-existing HAE and prompt the onset of HAE in asymptomatic carriers of HAE-related mutations. Based on the pathophysiologic links, we suggest that long-term prophylaxis should be considered in patients with HAE at risk of SARS-CoV-2 infection, especially the prophylactic use of C1 inhibitor and lanadelumab and that HAE patients must have medications for acute attacks of angioedema. Additionally, therapeutic strategies employed in HAE should be considered for the treatment of COVID-19, and clinical trials should be performed.

SELECTION OF CITATIONS
SEARCH DETAIL